COMP90042 Web Search & Text Analysis
Workshop Week 9

Zenan Zhai
May 7, 2019

University of Melbourne

Hidden Markov Model
- Concept
- Training

- Inference

Computation Theory

- Regular Language
- Finite State Automata
- Applications

Hidden Markov Model

Probabilistic graphic model

- Hidden: Tags are not observed.

-+ Markov assumption
- Transition: Current tag only depends on previous tag.
- Emission: Current word only depends on current tag.

Parameters

- A P(tj|ti_4) Transition Matrix
- B : P(wjlt;) Emission Matrix
- 7 : P(wy|s) Initial States

HMM - Training

Maximum Likelihood Estimation (MLE)

count(ti, ti_1)

P(ti|ti_q) =

(/| i W) COUnt(t,'_1)

P(wi|t;) = count(t;, w;)
T count(t)

Exercise

1. silver-J) wheels-NNS turn-VBP
2. wheels-NNS turn-VBP right-J)
3. right-)) wheels-NNS turn-VBP

How to estimate A, B, 7 ?

HMM - Inference

n
t = argmax. [[P(wilt)P(tilti1)

i—1
Viterbi Algorithm

- Dynamic programming
- Reduce problem size by decomposing to simpler sub problems.
- Keep track of

- Best sub-sequence probabilities
- Backward pointers

Exercise Worksheet 9 - question 2

- Most likely tag sequence given A, B,

Exercise - Viterbi Algorithm

A JJ. NNS VBP A silver wheel turn
J) 0.4 0.5 0.1 J) 0.8 0.1 0.1
NNS | 0.1 0.4 0.5 NNS 0.3 0.4 0.3
VBP | 0.4 05 0.1 VBP 0.1 0.3 0.6

7l)), NNS, VBP] = [0.3, 0.4, 0.3]

Hidden Markov Model
- Concept
- Training

- Inference

Computation Theory

- Regular Language
- Finite State Automata
- Applications

Regular Language

Definition
- Alanguage is called a regular language If some finite automaton
recognizes it.

Regular languages can be written in regular expressions.

Properties
- Closed under concatenation/union
- Closed under intersection
- Closed under negation

Finite State Automata

A finite state automata is a 5-tuple My = (Q, %, 6, g1, F)
- Q={0q1,92,q3}

. X ={0,1}

. 0 described as transitions

. gy is the start state, and

. F=q,.

g~ w N

What language does M, accept?

Weighted FSA

Adding weight to start/final state and transition in FSA

- XA :Q — R Assign weight to initial state
- p:Q — R Assign weight to final state
- 0:(Q,%,Q) — R Assign weight to transitions

Weighted FSA for scoring given sequence m = ty, ty, t3,- -+ , ty

+ S(m) = A(to) + XL (1) + p(tn)
- Dijsktra algorithm for shortest path: O(|V|log|V| + |E]|)

N-gram Language model as weighted FSA
- Mqj) = —logP(wy = i|start)
- p(q;) = —logP(end|wy = i)
—logP(Wp = j|Wy_1=1), ifw=]j
'(S(q,,W,ql): (m | m—1) .
0, otherwise

Finite State Transducer

A finite transducer Tis a 6-tuple (Q, &, T I, F, &) such that:

1. Q Set of all states

2. X Input alphabet

3. I Output alphabet

4. | Set of initial states

5. F Set of final states

6. § CQx{XUe} x {lUe} x Q Transitions

Added output to Weighted FSA, can be used for "translations”.

Questions:

- Are all languages regular?

- Comparing to a von Neumann architecture machine, what is
missing in FSA?

