COMP90042 Web Search & Text Analysis

Workshop Week 9

Zenan Zhai May 7, 2019

University of Melbourne

Outline

Hidden Markov Model

- Concept
- Training
- Inference

Computation Theory

- · Regular Language
- · Finite State Automata
- Applications

Hidden Markov Model

Probabilistic graphic model

- · Hidden: Tags are not observed.
- Markov assumption
 - · Transition: Current tag only depends on previous tag.
 - · Emission: Current word only depends on current tag.

Parameters

- $A: P(t_i|t_{i-1})$ Transition Matrix
- $B: P(w_i|t_i)$ Emission Matrix
- $\pi : P(w_1|s)$ Initial States

HMM - Training

Maximum Likelihood Estimation (MLE)

$$P(t_i|t_{i-1}) = \frac{count(t_i, t_{i-1})}{count(t_{i-1})}$$

$$P(w_i|t_i) = \frac{count(t_i, w_i)}{count(t_i)}$$

Exercise

- 1. silver-JJ wheels-NNS turn-VBP
- 2. wheels-NNS turn-VBP right-JJ
- 3. right-JJ wheels-NNS turn-VBP

How to estimate A, B, π ?

3

HMM - Inference

$$\hat{t} = argmax_t \prod_{i=1}^n P(w_i|t_i)P(t_i|t_{i-1})$$

Viterbi Algorithm

- · Dynamic programming
 - · Reduce problem size by decomposing to simpler sub problems.
- · Keep track of
 - Best sub-sequence probabilities α
 - Backward pointers

Exercise Worksheet 9 - question 2

• Most likely tag sequence given A,B,π

4

Exercise - Viterbi Algorithm

Α	JJ	NNS	VBP	Α	silver	wheel	turn
JJ	0.4	0.5	0.1	JJ	0.8	0.1	0.1
NNS	0.1	0.4	0.5	NNS	0.3	0.4	0.3
VBP	0.4	0.5	0.1	VBP	0.1	0.3	0.6

$$\pi$$
[JJ, NNS, VBP] = [0.3, 0.4, 0.3]

Outline

Hidden Markov Model

- Concept
- Training
- Inference

Computation Theory

- · Regular Language
- · Finite State Automata
- Applications

Regular Language

Definition

 A language is called a regular language if some finite automaton recognizes it.

Regular languages can be written in regular expressions.

Properties

- · Closed under concatenation/union
- Closed under intersection
- Closed under negation

Finite State Automata

A finite state automata is a 5-tuple $M_1 = (Q, \Sigma, \delta, q_1, F)$

- 1. $Q = \{q_1, q_2, q_3\}$
- 2. $\Sigma = \{0, 1\}$
- 3. δ described as transitions
- 4. q_1 is the start state, and
- 5. $F = q_2$.

What language does M_1 accept?

Weighted FSA

Adding weight to start/final state and transition in FSA

- $\lambda:Q \to \mathbb{R}$ Assign weight to initial state
- $\rho:Q\to\mathbb{R}$ Assign weight to final state
- · $\delta: (Q, \Sigma, Q) \to \mathbb{R}$ Assign weight to transitions

Weighted FSA for scoring given sequence $\pi=t_1,t_2,t_3,\cdots,t_N$

- $\cdot S(\pi) = \lambda(t_0) + \sum_{i=1}^{N} (t_i) + \rho(t_N)$
- Dijsktra algorithm for shortest path: O(|V|log|V| + |E|)

N-gram Language model as weighted FSA

- · $\lambda(q_i) = -logP(w_1 = i|start)$
- $\rho(q_i) = -logP(end|w_N = i)$

$$\cdot \ \delta(q_i, w, q_j) = \begin{cases} -log P(w_m = j | w_{m-1} = i), & \text{if } w = j \\ \infty, & \text{otherwise} \end{cases}$$

Finite State Transducer

A finite transducer T is a 6-tuple (Q, Σ , Γ , I, F, δ) such that:

- 1. Q Set of all states
- 2. Σ Input alphabet
- 3. Γ Output alphabet
- 4. I Set of initial states
- 5. F Set of final states
- 6. $\delta \subseteq Q \times \{\Sigma \cup \epsilon\} \times \{\Gamma \cup \epsilon\} \times Q$ Transitions

Added output to Weighted FSA, can be used for "translations".

Ouestions:

- · Are all languages regular?
- Comparing to a von Neumann architecture machine, what is missing in FSA?