COMP90042 Web Search & Text Analysis

Workshop Week 5

Zenan Zhai April 2, 2019

University of Melbourne

Outline

- Text Classification
 - · Definition
 - · Tasks
 - · Methods
- · N-gram Language Model
 - · Definition
 - Smoothing
 - · Laplacian
 - · Back-off & Interpolation
 - · Kneser-Ney
 - Evaluation
- · Excercise Notebook

Text Classification - Definition

Supervised Learning Task

Input:

- · Document: d
- Labels: $C = \{c_1, c_2, ... c_k\}$

Output:

• Prediction : Ĉ

Features

Discussion:

• How to convert document *d* to a feature vector?

Labels

- Topic classification
- Sentiment analysis
- Authorship attribution
- Native language identification
- Fact checking

Select features suitable for each task.

Outline

- · Text Classification
 - · Definition
 - Tasks
 - · Methods
- N-gram Language Model
 - · Definition
 - Smoothing
 - · Laplacian
 - · Back-off & Interpolation
 - · Kneser-Ney
 - Evaluation
- · Excercise Notebook

Definition

Modeling $P(w-1, w_2, ..., w_i)$ in a Language L

Intuitively:

•
$$P(W) = P(w_1)P(w_2|w_1)P(w_3|w_2, w_1)...P(w_n|w_{n-1}...w_1)$$

Markov Assumption:

- $P(w_i)$ only depends on previous n words
- $n = 2, P(S) = \prod_{w_i \in S} P(w_i | w_{i-1}, w_{i-2})$

Training

Maximum likelihood estimation (MLE).

Coin toss of *n* times:

$$P(face) = \frac{c(face)}{n}$$

2-gram LM:

$$P(w_i|w_{i-1}) = \frac{c(w_i, w_{i-1})}{c(w_{i-1})}$$

How to model sequence not exists in the training material?

Smoothing - Laplacian

Simply add value k:

$$P_{addk}(w_i|w_{i-1}) = \frac{c(w_i, w_{i-1}) + k}{c(w_{i-1}) + k|V|}$$

Problem:

- · k needs to be tuned
- \cdot |V| can grow very fast.

Smoothing - Back-off & interpolation

Both back-off and interpolation uses information from lower-order models.

Back-off:

• Use n-1-gram probability iff n-gram count is zero.

$$P_{backoff}(w_i|w_{i-1}) = \begin{cases} \frac{c(w_i, w_{i-1})}{c(w_{i-1})}, & \text{if } c(w_i, w_{i-1}) > 0\\ \alpha(w_{i-1})c(w_i), & \text{otherwise} \end{cases}$$

Interpolation:

- Incorporate lower-order information by factor λ s.
- $P_{interpolation}(w_i|w_{i-1}) = \lambda(w_i, w_{i-1})P(w_i|w_{i-1}) + (1 \lambda(w_{i-1}))P(w_i)$

Question: Disadvantage of this approach?

Smoothing - Kneser-Ney

$$P_{KN}(w_i|w_{i-1}) = \frac{\max(0, c(w_i, w_{i-1}) - d)}{c(w_{i-1})} + \lambda(w_{i-1})P_{continuation}(w_i)$$

- Why do we discount d?
- · What does continuation means?

Absolute discounting

$$P_{absDiscount}(w_i|w_{i-1}) = \frac{c(w_i, w_{i-1}) - d}{c(w_{i-1})} + \lambda(w_{i-1})P(w_i)$$
$$\lambda(w_{i-1}) = \frac{d}{c(w_{i-1})}$$

Intuition:

- Interpolation by using $\frac{d}{c(w_{i-1})}$ from lower-order model.
- · Lower impact on *n*-gram with higher count.

Bigram count in	Bigram count in
training set	heldout set
0	0.0000270
1	0.448
2	1.25
3	2.24
4	3.23
5	4.21
6	5.23
7	6.21
8	7.21
9	8.26

(Church and Gale, 1991)

- Record all bi-gram with count in [0, 9] in training set.
- Calculate Avg. count of these bi-grams in the held-out set.
- Difference for bi-grams with count in [2,9] are roughly the same.

Continuation counts

$$P_{continuation} = \frac{|\{w_{i-1} : c(w_i, w_{i-1})\}|}{\sum_{w'_i} |\{w_{i-1} : c(w'_i, w_{i-1})|}$$

Intuition:

- · Interpolation incorporates prob. from lower-order models.
- · Lower-order probs. without context can be unreliable.

Examples: If 1-gram has high count, but only appears as bi-grams.

- San Francisco
- · New Zealand

Solution:

- · Use count of bi-gram where words appear in the context instead.
- Normalise by counts of all possible contexts.

Continuation counts

Example I:

- w = food, valid context: Asian food, Indian food, Mexican food.
- · Calculate continuation counts for food in Asian food

$$P_{continuation}(food) = \frac{c(Asian, food)}{c(Asian, food) + c(Indian, food) + c(Mexican, food)}$$

Example II:

- · Now consider continuation counts for Zealand in New Zealand.
- Why $P_{continuation}(Zealand) = 1$?

Smoothing - Kneser-Ney

$$P_{KN}(w_i|w_{i-1}) = \frac{\max(0, c(w_i, w_{i-1}) - d)}{c(w_{i-1})} + \lambda(w_{i-1})P_{continuation}(w_i)$$

- · Use absolute discounting as interpolation.
- · Use continuation counting for lower-order probs.

Question:

· Why not use continuation count for the highest order prob.?

Evaluation

Recall the objective of language model:

• Modeling probability for an arbitrary sequence of *m* words.

Evaluate based on probability of all sequences in test set

$$PP(w_1, w_2, w_3, ..., w_m) = \sqrt[m]{\frac{1}{P(w_1, w_2, w_3, ..., w_m)}}$$

- Inverted prob. : lower perplexity \rightarrow better model
- Normalization : take m^{th} root of sequence prob. , m = length(S)

Outline

- · Text Classification
 - Definition
 - Tasks
 - · Methods
- · N-gram Language Model
 - · Definition
 - · Smoothing
 - · Laplacian
 - · Back-off & Interpolation
 - · Kneser-Ney
 - Evaluation
- · Excercise Notebook