COMP90042 Web Search & Text Analysis

Workshop Week 11

Zenan Zhai May 21, 2019

University of Melbourne

Roadmap

Features

- 1. Word Semantics
 - Lexicon semantics
 - · Distributional semantics
- 2. Sequence Labeling
 - · Part-of-speech tagging
 - Named entity recognition
- 3. Parsing
 - · Dependency parsing
 - Phrase-structure parsing

Roadmap

Applications

- 1. Text classification
- 2. Question answering
- 3. Discourse tasks
- 4. Machine translation
- 5. Summarization

. . .

Outlines

Dependency parsing

- Dependency grammar
- Projectivity
- Parsing
 - · Transition-based
 - Graph-based

Discourse

- · Discourse segmentation
- · Discourse parsing
- · Anaphor resolution

Dependency grammar

For each word we have:

- · A head word which this word depends on.
- · A dependency label of the connection.

Phrase-structure parsing

- Elements: words at leaves, otherwise phrases
- · Link: CFGs, no labels
- · Results: Constituent tree

Dependency parsing

- Elements: pair of words
- Link: dependencies with labels
- · Result: Dependency tree

All use part-of-speech tags as "features".

Projectivity

Condition:

A tree is projective if, for all arcs from head to dependent, there
is a path from the head to every word that lies between the
head and the dependent

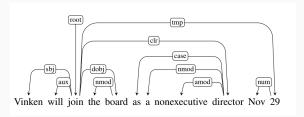


Figure JM3, Ch 13

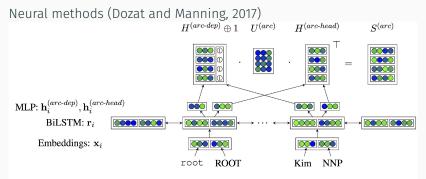
Transition-based parsing

2 data structures:

- · input buffer: words to process
- · stack: words being processed currently

transitions:

- · shift: add new word from buffer to stack
- arc: left or right, combining 2 words on the top of the stack and remove dependent.


Exercise:

· Yesterday, I shot an elephant in my pyjamas.

Graph-based parsing

CYK algorithm

- Recall CYK for pharse-structure parsing runs in $O(N^3G)$ where G is size of CFGs.
- For dependency parsing, $|G| = N^2$. (Pair of words, arrow can be left or right.)
- Trivial CYK runs in $O(N^5)$.

Outlines

Dependency parsing

- Dependency grammar
- Projectivity
- Parsing
 - · Transition-based
 - Graph-based

Discourse

- · Discourse segmentation
- · Discourse parsing
- · Anaphor resolution

Discourse segmentation

A task for finding the sections in documents.

TextTiling algorithm

- 1. BOW *k* sentences at both sides of all gaps.
- 2. Calculate similarity between neighbor BOW vectors.
- 3. Calculate $depth(gap_i) = (sim_{i-1} sim_i) + (sim_{i+1} sim_i)$ (Note that i is the id of gaps.)

Supervised methods

- 1. Encode sentences/sections.
- 2. Perform classification on presence of boundary/type of sections

Discourse parsing

Rhetorical structure theory (RST) parsing:

• Similar to dependency parsing/pharse structure parsing, except we swap words with discourse units (DUs).

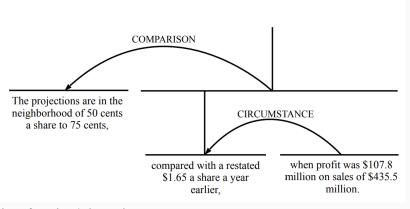


Figure from Ji and Eisenstein, 2014

Anaphor resolution

Concept:

- Anaphor: Linguistic expressions that refer back to earlier elements in the text.
- · Antecedent: The element an anaphor refers to.
 - · Pronouns: easy case, repetition of some previous mentions.
 - · Demonstrative: that guy
 - · Definites: the guy

Restrictions:

- Number. (e.g. $rats \leftrightarrow they$)
- Gender. (e.g. $Agirl \leftrightarrow she$)
- Reflexive pronoun (if as subject) (e.g. Aboy ↔ himself)

Unsupervised methods

The centering algorithm

- · Assumption: One discourse focus on only one entity.
- · Goal: Avoid rough shift of antecedent from that entity.

Definition:

- U: a sentence in discourse
- \cdot C_f : list of entities in the current sentence, ordered by salience.
- C_b: backward center of current sentence.
- C_p : preferred forward center of current sentence.

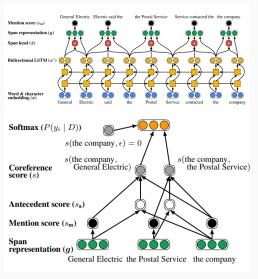
Rules:

- $C_b(U_i)$: Entity in $C_f(U_i)$ with highest order in $C_f(U_{i-1})$
- $C_p(U_i)$: Entity with **highest order** in $C_f(U_i)$

The centering algorithm - Example

What is a "rough" shift?

1. John saw a Ford in the dealership


 $C_f(U_1) = [John, Ford, dealership]$ $C_p(U_1) = John$ $C_h(U_1) = None$

2. He showed it to Bob

 $C_f(U_2) = [John, Ford, Bob]$ $C_p(U_2) = John$ $C_b(U_2) = John$

3. He bought it

Supervised anaphor resolution

Lee et al. 2017